Overview

Project Configuration
Dependencies
Manifest
Permissions Declarations

Implementation Steps
SDK Configuration
Ad Types
FullScreen Ads
Banner
Native Ads
Ad Delegates
FullScreen Ads
Native Ads
Banner
Pokkt ad player configuration
User Details
Pokkt Server Callback Params
Debugging
Proguard

PBKKT

! WIDEO ADS

POKKT SDK Integration Guide (v 8.0.0)
Android

N

W w NN

W o 00 0o v 1 1 »n & H

R el =Y
A W NN N O

PBKKT

! WIDEO ADE

Overview

Thank you for choosing Pokkt SDK for Android. This document contains all the information required to set up the
SDK with your project. We also support mediation for various third party networks. To know the supported third
party networks and their integration process go to the mediation section.

Before implementing plugins it is mandatory to go through project configuration and implementation steps, as
these sections contain mandatory steps for basic SDK integration and are followed by every plugin.

You can download our SDK from pokkt.com.

Downloaded SDK package will contain:
1. Docs:
Contains documentations for step by step integration for SDK.
2. PokktSDK_v8.0.0.jar
Pokkt SDK in jar format.
3. PokktSDK_v8.0.0.aar
Pokkt SDK in aar format.
4. Pokktsdk360ext.jar / Pokktsdk360ext.aar
Add these if you want to support 360 video ads.
5. PokktAds Demo
Source code for PokktAds Demo(Sample app) which showcases implementation of Pokkt SDK through
code for better understanding.
6. PokktAds Demo.apk
Application package of PoktkAds Demo, so that you can directly install this apk on your device and
have a look at how our SDK works instead of compiling the source code.
7. Dependency jars:
Please add google play services.

minSdkVersion supported is 11.

Screenld: This one parameter is accepted by almost all API’s of Pokkt SDK. This controls the placement of ads and
can be created on Pokkt Dashboard.

We will be referencing the PokktAds Demo app provided with SDK during the course of explanation in this
document. We suggest you go through the sample app for better understanding.

Project Configuration

Dependencies

Add PokktSDK_v8.0.0.jar or PokktSDK_v8.0.0.aar to your project.

We expect Google play services integrated in the project, although it is optional but we recommend you
to integrate it, as it is required to fetch AdvertisingID for devices,which is useful to deliver targeted
advertising to Android users.

http://app.pokkt.com/documentation/downloads?platform=android

! WIDEO ADE

Manifest

Android 9.0 (API 28) blocks cleartext (non-HTTPS) traffic by default, which can prevent ads from serving correctly.
To mitigate that, publishers whose apps run on Android 9.0 or above should ensure to add a network security
config file or you should set the usesCleartextTraffic attribute in your application tag to true. Doing so whitelists
cleartext traffic and allows non-HTTPS ads to serve.

<application

android:usesCleartextTraffic="true">

</application>

Permissions Declarations

Add the following permissions to your project manifest

Mandatory permissions.

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

e android.permission.INTERNET = Required for SDK communication with server.
e android.permission.ACCESS_NETWORK_STATE = Required to detect changes in network, like if WIFI is
available or not.

Activity Declaration

Add the following activity in your AndroidManifest for Pokkt SDK integration.

<activity
android:theme="@android:style/Theme.Translucent"
android:name="com.pokkt.sdk.PokktAdActivity"
android:configChanges="keyboard|keyboardHidden|navigation|
orientation|screenLayout|uiMode|screenSize|smallestScreenSize"
android:hardwareAccelerated="true"
android:label="Pokkt"
android:screenOrientation="1landscape"
android:windowSoftInputMode="stateAlwaysHidden|adjustUnspecified" />

You can change the android:screenOrientation="landscape" of your choice, the way you want to display the ads.

https://developer.android.com/training/articles/security-config#base-config

PBKKT

! WIDEO ADE

Implementation Steps

SDK Configuration

1. Set Application Id and Security key in Pokkt SDK. You can get it from the Pokkt dashboard from your
account. These are unique per app registered.

PokktAds.setPokktConfig("<Pokkt Application ID>", "<Pokkt Security Key>",
“<Activity Context>");

2. If you are using server to server integration with Pokkt, you can also set Third Party Userld in PokktAds.

PokktAds.setThirdPartyUserId("“<Third party user Id>");

3. Set GDPR consent in Pokkt SDK. This must be called before calling any ad related API.
Developers/Publishers must get the consent of the user. For more information on GDPR please refer
https://gdpr.eu/ and https://gdpr.eu/fag/. This API can again be used by publishers to revoke the consent.
If this API is not called or invalid data provided then SDK will access the users personal data for ad
targeting.

PokktAds.ConsentInfo consentInfo = new PokktAds.ConsentInfo();
consentInfo.setGDPRApplicable(true);

//true if GDPR is applicable.
consentInfo.setGDPRConsentAvailable(false);

//false if the user has given consent to use personal details for ad
targeting.

PokktAds.setDataAccessConsent(consentInfo);

https://gdpr.eu/
https://gdpr.eu/faq/

PBKKT

! WIDEO ADE

Ad Types

FullScreen Ads

FullScreen Ads are of two types : Video and Interstitial.

FullScreen ads can be rewarded or non-rewarded.

FullScreen properties can be configured from the Pokkt dashboard.

You can either cache the ad in advance or directly call show for it.

We suggest you cache the ad in advance so as to give seamless play behaviour, In other case it will stream
the video which may lead to unnecessary buffering delays depending on the network connection.

1. To cache FullScreen ad call:

PokktAds.cacheAd("<ScreenId>", <PokktAdDelegate>);

2. To show FullScreen ad call:

PokktAds.showAd("<ScreenId>", <PokktAdDelegate>, null);

3. You can check if FullScreen ad is cached or not using

PokktAds.isAdCached("<ScreenId>");

e Sample Screen Id for Video : 684able66abeb060faa500136c4c6a74
e Sample Screen Id for Interstitial : 5659028c8332c9583e742c183abbaafb
Banner

e Add PokktBannerView to your layout, we use it as a placeholder to populate banner ads into it.

<com.pokkt.sdk.banners.PokktBannerView
android:id="@+id/pokkt_banner_view_top"
android:layout_width="320dp"
android:layout_height="56edp"
android:layout_centerHorizontal="true"/>

e Load banner

PokktAds.showAd("<ScreenId>", <PokktAdDelegate>, <PokktBannerView>);

e You can remove Banner using:

PokktAds.destroyBanner (<pokktBannerView>) ;

e Sample Screen Id for Banner : 129cc53b4666f5aelebad6aSbc942764

! WIDEO ADE

Native Ads

A native ad may be served in feed or in between the developer content inside the app. Normally,
FullScreen ads are delivered on call to action by the user. Native ads eliminate this limitation and show
ads without any user request.Native ads are also non intrusive as they will be automatically paused when
the ad is out of the view by scrolling. The PokktNativeAdLayout will be part of developer application
parent components which may be ListView, Layout in ScrollView or WebView.

Add PokktNativeAdLayout to your Layout XML

<com.pokkt.sdk.pokktnativead.PokktNativeAdLayout
android:id="@+id/pokkt_native_ad"
android:layout_width="match_parent"
android:layout_height="300dp"
android:background="@android:color/white"
android:visibility="visible" />

Request for native Ad.
PokktAds.requestNativeAd(“<ScreenId>", <NativeAdsDelegate>);

Once PokktNativeAd is received in the AdReady callback of NativeAdsDelegate implementation,
pokktNativeAdLayout view should be set to pokktNativeAd.

pokktNativeAd.setMediaView(findViewById(R.id.pokkt_native_ad), context);
Developers must implement NativeAdsDelegate and supply POKKT SDK in requestNativeAd().

PokktAds.NativeAdsDelegate delegate = new PokktAds.NativeAdsDelegate() {
@0Override

public void adReady(screenId, pokktNativeAd) {
}

@Override
public void adFailed(screenId, String errorMessage) {

}

@Override
public void adClosed(String screenld, boolean isComplete) {
}

s

Developers will have to do cleanup of Native Ad in onDestroy of activity life cycle.

pokktNativeAd.destroy();

PBKKT

YIDEDO ADSE

Please refer to our Pokkt Ads Demo Source code for sample implementation of Native Ads in List, Scroll
and WebView

e Sample Screen Id for Video : 684able66abeb060faa500136c4c6a74
e Sample Screen Id for Interstitial : 5659028c8332c9583e742c183abbaafb

PBKKT

! WIDEO ADE

Ad Delegates

Ad delegates are optional, but we suggest to implement them as it will help you to keep track of the status of your
ad request.

FullScreen Ads

PokktAdDelegate pokktAdDelegate = new PokktAds.PokktAdDelegate() {
@Override

public void adCachingResult(screenId, isSuccess, reward,errorMessage) {

}

@Override
public void adDisplayedResult(screenld, isSuccess,errorMessage) {

}

@Override
public void adClosed(screenId, isComplete)
}

@Override
public void adGratified(screenld, reward) {

}

@Override
public void adClicked(screenId) {

}
|3

Native Ads

Developers should implement SDK Native Ad delegates and supply POKKT SDK in requestNativeAd()

PokktAds.NativeAdsDelegate delegate = new PokktAds.NativeAdsDelegate() {
@0verride

public void adReady(screenId,pokktNativeAd) {
}

@Override
public void adFailed(screenId, errorMessage) {

}

@Override
public void adClosed(screenId, isComplete) {
}

PBKKT

! WIDEO ADE

Banner

PokktAds.BannerAdDelegate adDelegate = new PokktAds.BannerAdDelegate() {
@Override
public void bannerExpanded(screenId) {

}

@0Override
public void bannerResized(screenId) {

}

@0Override
public void bannerCollapsed(screenId) {

}

@0verride
public void adCachingResult(screenld, isSuccess, reward, errorMessage) {

}

@0Override
public void adDisplayedResult(screenId, isSuccess,errorMessage) {
//called when banner is loaded/failed to load

}

@0verride
public void adClosed(screenId,isComplete) {
}

@0Override
public void adGratified(screenId, reward) {

}

@Override
public void adClicked(screenId) {
//called when banner is clicked

}

! WIDEO ADE

Pokkt ad player configuration

Pokkt Ad player works the way the App is configured at Pokkt dashboard, but we provide a way to override those
settings using PokktAdViewConfig.

Application should prefer configuration provided through code by the developer or what’s configured for the app
in the dashboard, can be controlled any time through the dashboard itself. If you want to make changes to this
configuration after your app distribution, you can contact Pokkt Team to do the same for your app through admin
console.

PokktAdViewConfig adViewConfig = new PokktAdViewConfig ();
// set properties values to adPlayerViewConfig
PokktAds.setAdPlayerViewConfig(adViewConfig);

Various setters for the properties that can be managed through this are:
1. Back button
Defines if user is allowed to close the Advertisement by clicking on back button or not.
Setter Name : setBackButtonDisabled(boolean backButtonDisabled)
Values:
True = Back button is disabled and user cannot close the Ad.
False = Back button is not disabled and user can close the Ad.
2. Default skip time
Defines the time after which user can skip the Ad.
Setter name: setDefaultSkipTime(int defaultSkipTime)
Values:
Any Integer value.
Default value is 10 seconds.
3. Should allow skip
Defines if user is allowed to skip the Ad or not.
Setter name: setShouldAllowSkip(boolean shouldAllowSkip)
Values:
True = User can skip Ad.
False = User can’t skip Ad.
4. Should allow mute
Defines if user is allowed to mute the Video Ad or not.
Setter name: setShouldAllowMute(boolean shouldAllowMute)
Values:
True = User can mute video Ad.
False = User can’t mute video Ad.
5. Should confirm skip
Defines if confirmation dialog is to be shown before skipping the Ad.
Setter name: ShouldConfirmSkip
Values:
True = Confirmation dialog will be shown before skipping the video.
False = Confirmation dialog will not be shown before skipping the video.

10

10.

11.

12,

! WIDEO ADE

Skip confirmation message
Defines what confirmation message to be shown in skip dialog.
Setter name: setShouldSkipConfirm(boolean shouldSkipConfirm)
Values:
Any String message.
Default value is “Skipping this video will earn you NO rewards. Are you sure?”.
Affirmative label for skip dialog
Defines what should be the label for affirmative button in skip dialog.
Setter name: setSkipConfirmYesLabel(String skipConfirmYesLabel)
Values:
Any String message.
Default value is “Yes”.
Negative label for skip dialog
Defines what should be the label for affirmative button in skip dialog.
Setter name: setSkipConfirmNoLabel(String skipConfirmNoLabel)
Values:
Any String message.
Default value is “No”.
Skip timer message
Defines the message to be shown before enabling the skip button. Don’t forget to add placeholder “##” in
your custom message.
This placeholder is replaced by property “Default skip time” assigned above.
Setter name: setSkipTimerMessage(String skipTimerMessage)
Values:
Any String message.
Default value is “You can skip video in ## seconds”
Incentive message
Defines the message to be shown during video progress, that after what time user will be incentivised.
Setter name: setlncentiveMessage(String incentiveMessage)
Values:
Any String message
Default value is “more seconds only for your reward
Learn More message
Defines message to be shown for video clicks.
Setter name: setLearnMoreMessage(String learnMoreMessage)
Values:

1”7

Any String message
Default value is “Learn more”

Should collect feedback
Defines the message to be shown during video progress, that after what time user will be incentivised.
Property name: setShouldCollectFeedback
Values:
True = If you want to collect feedback from the user for the Ad.
False = If you don’t want to collect feedback from the user for the Ad.

11

PBKKT

! WIDEO ADE

13. Audio Enabled
Provides a medium to disable audio for video ads without user interaction.
Property name: setAudioEnabled
Values:
True = If you want to play audio for video ads.
False = If you don’t want to play audio for a video ad.

User Details

For better targeting of ads you can also provide user details to our SDK using.

PokktUserDetails

pokktUserDetails.
pokktUserDetails.
pokktUserDetails.
pokktUserDetails.
pokktUserDetails.
pokktUserDetails.
pokktUserDetails.
pokktUserDetails.
pokktUserDetails.
pokktUserDetails.
pokktUserDetails.
pokktUserDetails.
pokktUserDetails.
pokktUserDetails.

pokktUserDetails = new PokktUserDetails();
setName(" ");

setAge(" ");

setSex(" ");
setMobileNumber (" ");
setEmailAddress(" ");
setLocation(" ");
setBirthday(" ");
setMaritalStatus(" ");
setFacebookId(" ");
setTwitterHandle(" ");
setEducation(" ");
setNationality(" ");
setEmployment (" ");
setMaturityRating(" ");

PokktAds.setUserDetails(pokktUserDetails);

Pokkt Server Callback Params

Developers can set some values in POKKT SDK that they need to be sent to their server via POKKT Server callbacks.

Map<String, String> params = new HashMap<>();
params.put("testdata”, "{\"adnetwork\": \"pokkt\"}");

PokktAds.setCallbackExtraParams(params) ;

12

PBKKT

! WIDEO ADE

Debugging

1. When your application is under development and if you want to see Pokkt logs and other informatory

messages, you can enable it by setting shouldDebug to true. Make sure to disable debugging before
release.

PokktAds.Debugging.shouldDebug(“<Context Context>", <true>);

2. Exportlog

Export your log to your desired location, we generally have it in the root directory of the SD card, if
permission for external storage is provided and in the cache folder otherwise.

PokktAds.Debugging.exportLog(getActivity());

3. Export log to cloud
You can also export log to cloud.

PokktAds.Debugging.exportLog(getActivity());

13

PBKKT

! WIDEO ADE

Proguard

If you are using proguard in your app, add the following rules to your proguard file.

Pokkt SDK

-keep class com.pokkt.** { public *; }
-dontwarn com.pokkt.**
moat
-keep class com.moat.xx { x; }
-dontwarn com.moat.**
OM
-keep class com.iab.omid.library.pokkt.**{*;}
-dontwarn com.iab.omid.**
360 if Pokktsdk36@ext.jar or Pokktsdk36@ext.aar is added
-keep class com.pokkt.sdk36@ext.*x { *; }
For communication with Pokkt WebView
-keepclassmembers class * {

@android.webkit.JavascriptInterface <methods>;
}

14

