
POKKT SDK Integration Guide (v 7.5.0)
Corona

Overview 2

Project Configuration 2
Android 2

Dependencies 2
Manifest 3

Permissions Declarations 3
Activity Declaration 3
Service Declaration 4

iOS 4
Dependencies 4
Framework 4
Info.plist 4

Implementation Steps 6
SDK Configuration 6
Ad Types 8

Video 8
Interstitial 8
Banner 9

Ad Delegates 10
Pokkt ad player configuration 10
User Details 13
Pokkt Server Callback Params 13
Debugging 13
Analytics 14

Google Analytics 14
Flurry Analytics 14
MixPanel Analytics 14
Fabric Analytics 14

IAP(In App Purchase) 14

Overview
Thank you for choosing Pokkt SDK for Corona. This document contains all the information required to
setup the SDK with your project. We also support mediation for various third party networks. To know
the supported third party networks and their integration process go to mediation section.
Before implementing plugins it is mandatory to go through project configuration and implementation
steps, as these sections contain mandatory steps for basic SDK integration and are followed by every
plugin.

minSdkVersion supported is 11.

ScreenName: This one parameter is accepted by almost all API’s of Pokkt SDK. This controls the
placement of ads and can be created on Pokkt Dashboard.

 We will be referencing PokktAds Demo app provided with SDK during the course of explanation in
this document. We suggest you go through the sample app for better understanding.

Project Configuration

Android

In the package downloaded above you will find:
1. Docs:

Contains step wise step integration for SDK.
2. PokktCoronaDemo app code.
3. PokktCoronaDemo.apk:

Application package of Pokkt Corona Demo, so that you can directly install this apk on
your device and have a look how our SDK works instead of compiling the source code.

4. SDK + Plugin:
a. JAR

● PokktSDK_v7.5.0.jar
● pokktsdk360ext.jar
● PAPCorona.jar

b. Dependencies
● Android-support-v4.jar
● google-play-services.jar

minSdkVersion supported is 11.

Dependencies

● Extract the provided file “corona-plugin-pokkt.zip” into a directory.
● We expect Google play services integrated in project, although it is optional but we

recommend you to integrate it, as it is required to fetch AdvertisingID for device,which is
useful to deliver targeted advertising to Android users.

Manifest

Permissions Declarations
We have already added the following mandatory permissions to the manifest via plugin.xml

1. Mandatory permissions.

● android.permission.INTERNET = Required for SDK communication with server.
● android.permission.ACCESS_NETWORK_STATE = Required to detect changes in network, like if

WIFI is available or not.

2. Optional permissions. We have commented out these in plugin.xml. Please uncomment those
for better ad delivery and ad experience.

● android.permission.WAKE_LOCK = Required to prevent device from going into the sleep mode
during video play.

● android.permission.WRITE_EXTERNAL_STORAGE = Required to store media files related to ads
in external SD card, if not provided we will use app cache folder to store media files, which
will result in unnecessary increase in application’s size. It is recommended to ask for this
permission as low end devices generally have less internal memory available.

● android.permission.WRITE_CALENDAR = Some Ads create events in calendar.
● android.permission.ACCESS_FINE_LOCATION = Some Ads show content based on user’s location
● android.permission.CALL_PHONE = Some Ads are interactive and they provide you a way to call

directly from the content.
● android.permission.SEND_SMS = Some Ads are interactive and they provide you a way to send

message.
● android.permission.VIBRATE = Some Ads provide haptic feedback, so as to maintain their

behavior we need this permission

Activity Declaration
We have already added the following activity in your AndroidManifest for Pokkt SDK integration via
plugin.xml

You can change the android:screenOrientation="landscape" to of your choice, the way you want to
display the ads.

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

<uses-permission android:name="android.permission.WAKE_LOCK" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.WRITE_CALENDAR" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<uses-permission android:name="android.permission.CALL_PHONE" />
<uses-permission android:name="android.permission.SEND_SMS" />
<uses-permission android:name="android.permission.VIBRATE" />

<activity
android:name="com.pokkt.sdk.PokktAdActivity"
android:configChanges="keyboard|keyboardHidden|navigation|
orientation|screenLayout|uiMode|screenSize|smallestScreenSize"
android:hardwareAccelerated="true"
android:label=”Pokkt”
android:screenOrientation="landscape"
android:windowSoftInputMode="stateAlwaysHidden|adjustUnspecified" />

Service Declaration
We have already added the following service in your AndroidManifest for receiving InApp notifications.
How to set up InApp notifications see “Pokkt Dashboard” document.

iOS

In the package downloaded above you will find:
1. Docs:

Contains documentations for step wise step integration for SDK.
2. corona-plugin-pokkt/iOS:

a. libPokktSDK.a
b. Headers

Dependencies

● Extract the provided file “corona-plugin-pokkt.zip” into a directory. Link the pokkt library in
the xcode project.

Framework

Info.plist

Add the below exceptions to your application info.plist.

<service
android:name="com.pokkt.sdk.notification.NotificationService"
android:exported="false"
android:label="PokktNotificationService" />

CoreData.framework
Foundation.framework
MediaPlayer.framework
SystemConfiguration.framework
UIKit.framework
CoreTelephony.framework
EventKit.framework
AdSupport.framework
CoreGraphics.framework
CoreMotion.framework
MessageUI.framework
EventKitUI.framework
CoreLocation.framework
AVFoundation.framework
ARKit.framework
libc++.tbd

<key>NSAppTransportSecurity</key>
 <dict>
 <key>NSExceptionDomains</key>
 <dict>
 <key>pokkt.com</key>
 <dict>
 <key>NSIncludesSubdomains</key>
 <true/>
 <key>NSExceptionAllowsInsecureHTTPLoads</key>
 <true/>
 <key>NSExceptionRequiresForwardSecrecy</key>
 <false/>
 <key>NSExceptionMinimumTLSVersion</key>
 <string>TLSv1.2</string>
 <key>NSThirdPartyExceptionAllowsInsecureHTTPLoads</key>
 <false/>
 <key>NSThirdPartyExceptionRequiresForwardSecrecy</key>
 <true/>
 <key>NSThirdPartyExceptionMinimumTLSVersion</key>
 <string>TLSv1.2</string>
 <key>NSRequiresCertificateTransparency</key>
 <false/>
 </dict>
 <key>cloudfront.net</key>
 <dict>
 <key>NSIncludesSubdomains</key>
 <true/>
 <key>NSExceptionAllowsInsecureHTTPLoads</key>
 <true/>
 <key>NSExceptionRequiresForwardSecrecy</key>
 <false/>
 <key>NSExceptionMinimumTLSVersion</key>
 <string>TLSv1.2</string>
 <key>NSThirdPartyExceptionAllowsInsecureHTTPLoads</key>
 <false/>
 <key>NSThirdPartyExceptionRequiresForwardSecrecy</key>
 <true/>
 <key>NSThirdPartyExceptionMinimumTLSVersion</key>
 <string>TLSv1.2</string>
 <key>NSRequiresCertificateTransparency</key>
 <false/>
 </dict>
 </dict> </dict>

Implementation Steps

SDK Configuration

1. For all invocation of Pokkt SDK developer will make use of methods available in pokkt.plugin
using PokktNativeExtension class. Android Plugin LuaLoader will have changes as below :

2. Set Application Id and Security key in Pokkt SDK. You can get it from Pokkt dashboard from
your account. These are unique per app registered.

//This corresponds to the event name, e.g. [Lua] event.name
private static final String POKKT_EVENT_NAME = "pluginpokktevent"; 
//Pokkt plugin
PokktNativeExtension pokktNativeExtension = new PokktNativeExtension();

//Implements the library.init() Lua function.
public int init(LuaState L) {
 int listenerIndex = 1;
 if (CoronaLua.isListener(L, listenerIndex, POKKT_EVENT_NAME)) {
 fListener = CoronaLua.newRef(L, listenerIndex);
 pokktNativeExtension.setListenerIndex(fListener);
 }
 return 0;
}

@Override
public int invoke(LuaState L) {
 // Register this plugin into Lua with the following functions.
 NamedJavaFunction[] luaFunctions = new NamedJavaFunction[]{
 new plugin.pokkt.LuaLoader.InitWrapper(),};
 luaFunctions = pokktNativeExtension.addPokktNamedFunctions(luaFunctions);
 String libName = L.toString(1);
 L.register(libName, luaFunctions);

 //1 indicates that Lua require() function will return above Lua library.
 return 1;
}

local pokktlibrary = require "plugin.pokkt"
local pokktConfigJson = {
 ["appId"] = "<Pokkt Application ID>",
 ["securityKey"] = <Pokkt Security Key>"

}
local encoded = json.encode(pokktConfigJson)
pokktlibrary.NotifyPokkt("setPokktConfig",encoded)

3. Set GDPR consent in Pokkt SDK. This must be called before calling any ad related API.
Developers/Publishers must get the consent from user. For more information on GDPR please
refer https://www.eugdpr.org/ and https://www.eugdpr.org/gdpr-faqs.html. This API can again
be used by publishers to revoke the consent. If this API is not called or invalid data provided
then SDK will access the users personal data for ad targeting.

4. If you are using server to server integration with Pokkt, you can also set Third Party UserId in

PokktAds.

5. When your application is under development and if you want to see Pokkt logs and other
informatory messages, you can enable it by setting setDebug to true. Make sure to disable
debugging before release.

local t = {
 ["GDPRConsentAvailable"] = <“true/false”>,
 ["GDPRApplicable"] = <“true/false”>
}
local encoded = json.encode(t)
pokktlibrary.NotifyPokkt("setDataAccessConsent",encoded)
--GDPRConsentAvailable true if GDPR is applicable.
--GDPRConsentAvailable true if user has given consent to use personal details for ad targeting.

pokktlibrary.NotifyPokkt("setThirdPartyUserId", "<unique user id>")

pokktlibrary.NotifyPokkt("Debugging_shouldDebug", "<true/false>")

https://www.eugdpr.org/
https://www.eugdpr.org/gdpr-faqs.html

Ad Types

Video

● Video ad can be rewarded or non-rewarded. You can either cache the ad in advance or directly
call show for it.

● We suggest you to cache the ad in advance so as to give seamless play behaviour, In other case
it will stream the video which may lead to unnecessary buffering delays depending on the
network connection.

1. To cache rewarded ad call:

2. To show rewarded ad call:

3. To cache non-rewarded ad call:

4. To show non-rewarded ad call:

5. To check if video ad is cached:

Interstitial

1. To cache rewarded ad call:

2. To show rewarded ad call:

pokktlibrary.NotifyPokkt("VideoAd_cacheRewarded","<ScreenName>")

pokktlibrary.NotifyPokkt("VideoAd_showRewarded","<ScreenName>")

pokktlibrary.NotifyPokkt("VideoAd_cacheNonRewarded","<ScreenName>")

pokktlibrary.NotifyPokkt("VideoAd_showNonRewarded","<ScreenName>")

local jsondata = {
 ["screenName"] = <ScreenName>",
 ["isRewarded"] = <true/false>
}
local encoded = json.encode(jsondata)
local isVideoCached = pokktlibrary.NotifyPokkt("VideoAd_isAdCached",encoded)

pokktlibrary.NotifyPokkt("Interstitial_cacheRewarded","<ScreenName>")

pokktlibrary.NotifyPokkt("Interstitial_showRewarded","<ScreenName>")

3. To cache non-rewarded ad call:

4. To show non-rewarded ad call:

5. To check if interstitial ad is cached:

Banner

● Load banner

● Banner position values can be
○ TOP_LEFT = "1"
○ TOP_CENTER = "2"
○ TOP_RIGHT = "3"
○ MIDDLE_LEFT = "4"
○ MIDDLE_CENTER = "5"
○ MIDDLE_RIGHT = "6"
○ BOTTOM_LEFT = "7"
○ BOTTOM_CENTER = "8"
○ BOTTOM_RIGHT = "9"

● You can remove Banner using:

pokktlibrary.NotifyPokkt("Interstitial_cacheNonRewarded","<ScreenName>")

pokktlibrary.NotifyPokkt("Interstitial_showNonRewarded","<ScreenName>")

local jsondata = {
 ["screenName"] = screenEditText.text,
 ["isRewarded"] = true
}
local encoded = json.encode(jsondata)
local isAdCached = pokktlibrary.NotifyPokkt("Interstitial_isAdCached",encoded)
infoText.text = "Interstitial Cached : "..tostring(isAdCached)

local jsondata = {
 ["screenName"] = “<screenName>”,
 ["bannerPosition"] = "8"
}
local encoded = json.encode(jsondata)
pokktlibrary.NotifyPokkt("Banner_loadBanner",encoded)

pokktlibrary.NotifyPokkt("Banner_destroyBanner",“<screenName>”)

Ad Delegates

Ad delegates are optional, but we suggest to implement them as it will help you to keep track of the
status of your ad request.

Pokkt ad player configuration

Pokkt Ad player works the way App is configured at Pokkt dashboard, but we provide a way to override
those settings using PokktAdPlayerViewConfig.

Application should prefer configuration provided through code by developer or what’s configured for
the app in dashboard, can be controlled any time through the dashboard itself. If you want to make
changes to this configuration after your app distribution, you can contact Pokkt Team to do the same
for your app through admin console.

Various setters for the properties that can be managed through this are:

1. Back button
Defines if user is allowed to close the Advertisement by clicking on back button or not.
Setter Name : setBackButtonDisabled(boolean backButtonDisabled)
Values:

True = Back button is disabled and user cannot close the Ad.
False = Back button is not disabled and user can close the Ad.

2. Default skip time
Defines the time after which user can skip the Ad.
Setter name: setDefaultSkipTime(int defaultSkipTime)
Values:

local function listener(event)
 print("Received event from Pokkt Library plugin (" .. event.name .. "): ", event.params)
end
pokktlibrary.init(listener)

local adPlayerConfigJson = {
 ["backButtonDisabled"] = false,
 ["defaultSkipTime"] = 10,
 ["shouldAllowSkip"] = true,
 ["shouldAllowMute"] = true,
 ["shouldSkipConfirm"] = true,
 ["skipConfirmMessage"] = "Skipping this video will earn you NO rewards. Are you sure?",
 ["skipConfirmYesLabel"] = "Yes",
 ["skipConfirmNoLabel"] = "No",
 ["skipTimerMessage"] = "You can skip video in ## seconds",
 ["incentiveMessage"] = "more seconds only for your reward !",
 ["shouldCollectFeedback"] = true,
 ["isAudioEnabled"] = true
}
local encoded = json.encode(adPlayerConfigJson)
pokktlibrary.NotifyPokkt("setAdPlayerViewConfig",encoded)

 Any Integer value.
Default value is 10 seconds.

3. Should allow skip
Defines if user is allowed to skip the Ad or not.
Setter name: setShouldAllowSkip(boolean shouldAllowSkip)
Values:

True = User can skip Ad.
False = User can’t skip Ad.

4. Should allow mute
Defines if user is allowed to mute the Video Ad or not.
Setter name: setShouldAllowMute(boolean shouldAllowMute)
Values:

True = User can mute video Ad.
False = User can’t mute video Ad.

5. Should confirm skip
Defines if confirmation dialog is to be shown before skipping the Ad.
Setter name: ShouldConfirmSkip
Values:

True = Confirmation dialog will be shown before skipping the video.
False = Confirmation dialog will not be shown before skipping the video.

6. Skip confirmation message
Defines what confirmation message to be shown in skip dialog.
Setter name: setShouldSkipConfirm(boolean shouldSkipConfirm)
Values:

Any String message.
Default value is “Skipping this video will earn you NO rewards. Are you sure?”.

7. Affirmative label for skip dialog
Defines what should be the label for affirmative button in skip dialog.
Setter name: setSkipConfirmYesLabel(String skipConfirmYesLabel)
Values:

Any String message.
Default value is “Yes”.

8. Negative label for skip dialog
Defines what should be the label for affirmative button in skip dialog.
Setter name: setSkipConfirmNoLabel(String skipConfirmNoLabel)
Values:

Any String message.
Default value is “No”.

9. Skip timer message
Defines message to be shown before enabling skip button. Don’t forget to add placeholder
“##” in your custom message.
This placeholder is replaced by property “Default skip time” assigned above.
Setter name: setSkipTimerMessage(String skipTimerMessage)
Values:

Any String message.
Default value is “You can skip video in ## seconds”

10. Incentive message
Defines message to be shown during video progress, that after what time user will be
incentivised.
Setter name: setIncentiveMessage(String incentiveMessage)
Values:

Any String message
Default value is “more seconds only for your reward !”

11. Should collect feedback
Defines message to be shown during video progress, that after what time user will be
incentivised.
Property name: setShouldCollectFeedback
Values:

True = If you want to collect feedback from the user for the Ad.
False = If you don’t want to collect feedback from the user for the Ad.

12. Audio Enabled
Provides a medium to disable audio for video ad without user interaction.
Property name: setAudioEnabled
Values:

True = If you want to play audio for video ad.
False = If you don’t want to play audio for video ad. 

User Details

For better targeting of ads you can also provide user details to our SDK using.

Pokkt Server Callback Params

Developer can set some values in POKKT SDK that they need to be sent to their server via POKKT Server
callbacks.

Debugging

Other than enabling debugging for Pokkt SDK, it can also be used to:
1. Export log

Export your log to your desired location, we generally have it in root directory of SD card, if
permission for external storage is provided and in cache folder otherwise.

2. Export log to cloud
You can also export log to cloud.

local userDetailsJson = {
 ["name"] = "",
 ["age"] = "",
 ["sex"] = "",
 ["mobileNo"] = "",
 ["emailAddress"] = "",
 ["location"] = "",
 ["birthday"] = "",
 ["maritalStatus"] = "",
 ["facebookId"] = "",
 ["twitterHandle"] = "",
 ["education"] = "",
 ["nationality"] = "",
 ["employment"] = "",
 ["maturityRating"] = ""
}
local encoded = json.encode(userDetailsJson)
pokktlibrary.NotifyPokkt("setUserDetails",encoded)

local serverCallbackJson = {
 ["Network"] = "POKKT",
 ["Integration"] = "Corona"
}
local encoded = json.encode(serverCallbackJson)
pokktlibrary.NotifyPokkt("setCallbackExtraParams",encoded)

pokktlibrary.NotifyPokkt("Debugging_exportLog")

pokktlibrary.NotifyPokkt("Debugging_exportLogToCloud")

Analytics

We support various analytics in Pokkt SDK.
Below is mentioned how to enable various analytics with Pokkt SDK.

Google Analytics

Google analytics Id can be obtained from Google dashboard.

Flurry Analytics

Flurry application key can be obtained from Flurry dashboard.

MixPanel Analytics

MixPanel project token can be obtained from MixPanel dashboard.

Fabric Analytics

Analytics Id is not required in case of Fabric.

IAP(In App Purchase)

Call trackIAP to send any In App purchase information to Pokkt.

local analyticsJson = {
 ["selectedAnalyticsType"] = "GOOGLE_ANALYTICS",
 ["googleAnalyticsID"] = "<Google Analytics Id>"
}
local encoded = json.encode(analyticsJson)
pokktlibrary.NotifyPokkt("Analytics_setAnalyticsDetails",encoded)

local analyticsJson = {
 ["selectedAnalyticsType"] = "FLURRY",
 ["flurryApplicationKey"] = "<flurry Application Key>"
}
local encoded = json.encode(analyticsJson)
pokktlibrary.NotifyPokkt("Analytics_setAnalyticsDetails",encoded)

local analyticsJson = {
 ["selectedAnalyticsType"] = "MIXPANEL",
 ["flurryApplicationKey"] = "<mixpanel project token>"
}
local encoded = json.encode(analyticsJson)
pokktlibrary.NotifyPokkt("Analytics_setAnalyticsDetails",encoded)

local analyticsJson = {
 ["selectedAnalyticsType"] = "FABRIC"
}
local encoded = json.encode(analyticsJson)
pokktlibrary.NotifyPokkt("Analytics_setAnalyticsDetails",encoded)

local iapJson = {
 ["productId"] = "<productId>",
 ["price"] = <price>,
 ["currencyCode"] = "<title>",
 ["title"] = "<productId>",
 ["purchaseData"] = "<purchaseData>",
 ["description"] = "<description>",
 ["purchaseSignature"] = “<purchaseSignature>”,
 ["purchaseStore"] = “<purchaseStore>”
}
local encoded = json.encode(iapJson)
pokktlibrary.NotifyPokkt("Analytics_trackIAP",encoded)

